

Architecture and Design Considerations

for Secure Software

Software Assurance Pocket Guide Series:
Development, Volume V
Version 1.0, October 23, 2009

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

1

Software Assurance (SwA) Pocket Guide Resources

This is a resource for ‗getting started‘ in selecting and adopting relevant practices for delivering secure software. As part of
the Software Assurance (SwA) Pocket Guide series, this resource is offered for informative use only; it is not intended as
directive or presented as being comprehensive since it references and summarizes material in the source documents that
provide detailed information. When referencing any part of this document, please provide proper attribution and reference
the source documents, when applicable.

This volume of the SwA Pocket Guide series focuses on the architecture and design for secure software. It describes the

steps and knowledge required to establish the architecture and high-level design for secure software during the Software

Development Life Cycle (SDLC).

At the back of this pocket guide are references, limitation statements, and a listing of topics addressed in the SwA Pocket
Guide series. All SwA Pocket Guides and SwA-related documents are freely available for download via the SwA
Community Resources and Information Clearinghouse at https://buildsecurityin.us-cert.gov/swa .

Acknowledgements

The SwA Forum and Working Groups function as a stakeholder mega-community that welcomes additional participation in

advancing software security and refining SwA-related information resources that are offered free for public use. Input to all

SwA resources is encouraged. Please contact Software.Assurance@dhs.gov for comments and inquiries.

The SwA Forum is composed of government, industry, and academic members. The SwA Forum focuses on incorporating

SwA considerations in acquisition and development processes relative to potential risk exposures that could be introduced

by software and the software supply chain.

Participants in the SwA Forum‘s Processes & Practices Working Group collaborated with the Technology, Tools and

Product Evaluation Working Group in developing the material used in this pocket guide as a step in raising awareness on

how to incorporate SwA throughout the Software Development Life Cycle (SDLC).

https://buildsecurityin.us-cert.gov/swa
mailto:Software.Assurance@dhs.gov

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

2

Information contained in this pocket guide is primarily derived from the documents listed in the Resource boxes that follow
throughout this pocket guide.

Special thanks to the Department of Homeland Security (DHS) National Cyber Security Division's Software Assurance
team and Robert Seacord, who provided much of the support to enable the successful completion of this guide and related
SwA documents.

Overview

The Guide to the Software Engineering Body of Knowledge (SWEBOK) defines the design phase as both ―the process of
defining the architecture, components, interfaces, and other characteristics of a system or component‖ and ―the result of
[that] process.‖ The software design phase is the software engineering life cycle activity where software requirements are
analyzed in order to produce a description of the software‘s internal structure that will serve as the basis for its
implementation.

The software design phase consists of the architectural design and detailed design activities. These activities follow
software requirements analysis phase and precedes the software implementation the Software Development Life Cycle
(SDLC).

Software architectural design, also known as top-level design, describes the software top-level structure and
organization and identifies the various components. The architectural design allocates requirements to components
identified in the design phase. Architecture describes components at an abstract level, while leaving their implementation
details unspecified. Some components may be modeled, prototyped, or elaborated at lower levels of abstraction. Top-
level design activities include the design of interfaces among components in the architecture and possibly a database
design. Documents produced during the architectural design phase can include:

» Documentation of models, prototypes, and simulations,
» Preliminary user‘s manual,
» Preliminary test requirements,
» Documentation of feasibility, and
» Documentation of the traceability of requirements to the architecture design.

Resources

» ―Software Security Assurance: A State-of-the-Art Report‖(SOAR), Goertzel, Karen Mercedes, et al,
Information Assurance Technology Analysis Center (IATAC) of the DTIC at
http://iac.dtic.mil/iatac/download/security.pdf.

» IEEE Computer Society, ―Guide to the Software Engineering Body of Knowledge (SWEBOK)‖ at
http://www2.computer.org/portal/web/swebok.

» ―Lessons Learned from Five Years of Building More Secure Software‖, Michael Howard, MSDN, at
http://msdn.microsoft.com/en-us/magazine/cc163310.aspx.

» “Microsoft Security Development Lifecycle (SDL) – Process Guidance‖ at
http://msdn.microsoft.com/en-us/library/84aed186-1d75-4366-8e61-8d258746bopq.aspx.

» ―The Ten Best Practices for Secure Software Development‖, Mano Paul, (ISC)2.

»

http://iac.dtic.mil/iatac/download/security.pdf
http://www2.computer.org/portal/web/swebok
http://msdn.microsoft.com/en-us/magazine/cc163310.aspx
http://msdn.microsoft.com/en-us/library/84aed186-1d75-4366-8e61-8d258746bopq.aspx

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

3

Figure 1 - Architecture Design With Assurance Activities

Software detailed design
consists of describing each
component sufficiently to allow for
its (implementation) construction.
Detailed design activities define
data structures, algorithms, and
control information for each
component in a software system.
The State-of-the-Art Report
SOAR modified Figure 1,
illustrates the architectural and
detailed design phases of a
standard software life cycle
depicted in IEEE Standard 1074-
2006 with security assurance
activities and artifacts included.

To decrease the number of
design vulnerabilities, special
attention should be devoted to
security issues captured during threat modeling, requirement analyses, and early architecture phases. In general, a design
vulnerability is a flaw in a software system‘s architecture, specification, or high-level or low-level design. A design
vulnerability is a problem that results from a fundamental mistake or oversight in the design phase. These types of flaws
often occur because of incorrect assumptions made about the run-time environment or risk exposure that the system will
encounter during deployment.

A MSDN article on ―Lessons Learned from Five Years of Building More Secure Software,‖ under the heading ―It‘s not just
the code,‖ that highlights many software security vulnerabilities that are not coding issues at all but design issues. When
one is exclusively focused on finding security issues in code, that person runs the risk of missing out on entire classes of
vulnerabilities. Some security issues in design and semantic flaws (ones that are not syntactic or code related), such as
business logic flaws, cannot be detected in code and need to be inspected by performing threat models and abuse case
modeling during the design stage of the SDLC.

The best time to influence a project‘s security design is early in its life cycle. Functional specifications may need to
describe security features or privacy features that are directly exposed to users, such as requiring user authentication to
access specific data or user consent before use of a high-risk privacy feature. Design specifications should describe how
to implement these features and how to implement all functionality as secure features. Secure features are defined as
features with functionality that is well engineered with respect to security, such as rigorously validating all data before
processing it or cryptographically robust use of cryptographic APIs. It is important to consider security issues carefully and
early when you design features and to avoid attempts to add security and privacy near the end of a project‘s development.

Design Principles for Secure Software

Developers need to know secure software design principles and how they are employed in the design of resilient and
trustworthy systems. Two essential concepts of design include abstraction and decomposition of the system using the
architecture and constraints to achieve the security requirements obtained during the requirements phase. Most of the
readers are probably familiar with these concepts. For those who are not:

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

4

Abstraction is a process for reducing the complexity of a system by removing unnecessary details and isolating the most
important elements to make the design more manageable.

Decomposition (also known as factoring) is the process of describing the generalizations that compose an abstraction.
One method, top-down decomposition, involves breaking down a large system into smaller parts. For object-oriented
designs, the progression would be application, module, class, and method.

Other secure software design principles are detailed in a multitude of books, white papers, web portals, and articles. In this
section we will provide a brief highlight of two methods and reference resources for additional research. The first one is
derived from the developers guide ―Enhancing the Development Life Cycle to Produce Secure Software‖ that describes
three general principles summarized on Table 1:

Table 1- Adapted from ―Enhancing the Development Life Cycle to Produce Secure Software”

General Principle Key Practices Principle Design Conformance

Minimize the number of
high-consequence
targets

Principle of least privilege Minimizes the number of actors in the system
granted high levels of privilege, and the
amount of time any actor holds onto its
privileges.

Separation of privileges, duties,
and roles

Ensures that no single entity (human or
software) should have all the privileges
required to modify, delete, or destroy the
system, components and resources.

Separation of domains This practice makes separation of roles and
privileges easier to implement.

Don’t expose
vulnerable or high-
consequence
components

Keep program data, executables,
and configuration data separated

Reduces the likelihood that an attacker who
gains access to program data will easily
locate and gain access to program
executables or control/configuration data.

Segregate trusted entities from
untrusted entities

Reduces the exposure of the software‘s high-
consequence functions from its high-risk
functions, which can be susceptible to
attacks.

Minimize the number of entry and
exit points

This practice reduces the attack surface.

Assume environment data is not
trustworthy

Reduces the exposure of the software to
potentially malicious execution environment
components or attacker-intercepted and
modified environment data.

Use only safe interfaces to
environment resources

This practice reduces the exposure of the
data passed between the software and its
environment.

Deny attackers the
means to compromise

Simplify the design This practice minimizes the number of
attacker-exploitable vulnerabilities and
weaknesses in the system.

Hold all actors accountable This practice ensures that all attacker actions
are observed and recorded, contributing to
the ability to recognize and isolate/block the
source of attack patterns.

Avoid timing, synchronization, and
sequencing issues

This practice reduces the likelihood of race
conditions, order dependencies,
synchronization problems, and deadlocks.

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

5

Table 1- Adapted from ―Enhancing the Development Life Cycle to Produce Secure Software”

General Principle Key Practices Principle Design Conformance

Deny attackers the
means to compromise
(continue)

Make secure states easy to enter
and vulnerable states difficult to
enter

This practice reduces the likelihood that the
software will be allowed to inadvertently enter
a vulnerable state.

Design for controllability This practice makes it easier to detect attack
paths, and disengage the software from its
interactions with attackers.

Design for secure failure Reduces the likelihood that a failure in the
software will leave it vulnerable to attack.

The second secure software design principle is from the highly-regarded paper ―The Protection of Information in
Computer Systems” by Saltzer and Schroeder which identified another set of protection principles that should be applied
when designing a secure system, as shown on Table 2.

Table 2- Adapted from Saltzer & Shroeder “Protection of Information in Computer Systems”

Design Principle What it Means
Economy of mechanism Keep the design as simple and small as possible.

Fail-safe defaults Base access decisions on permission rather than exclusion. This principle means that the
default is lack of access, and the protection scheme identifies conditions under which access is
permitted.

Complete mediation Every access to every object must be checked for authority. This principle, when systematically
applied, is the primary underpinning of the protection system. It forces a system-wide view of
access control, which in addition to normal operation includes initialization, recovery, shutdown,
and maintenance.

Open design The design should not be secret. The mechanisms should not depend on the ignorance of
potential attackers, but rather on the possession of specific, more easily protected, keys or
passwords.

Separation of privilege A protection mechanism that requires two keys to unlock it is more robust and flexible than one
that allows access to the presenter with only a single key.

Least privilege Every program and every user of the system should operate using the least set of privileges
necessary to complete the job.

Least common mechanism Minimize the amount of mechanism common to more than one user and depended on by all
users. Every shared mechanism represents a potential information path between users and
must be designed with great care to be sure it does not unintentionally compromise security.

Psychological acceptability It is essential that the human interface be designed for ease of use, so that users routinely and
automatically apply the protection mechanisms correctly.

 Resources

» ―Enhancing the Development Life Cycle to Produce Secure Software (EDLC)”, DHS SwA Forum

Process and Practices Working Group, 2008; at https://buildsecurityin.us-cert.gov/swa/procwg.html.

» “Software Assurance: A Curriculum Guide to the Common Body of Knowledge to Produce, Acquire
and Sustain Secure Software‖, Software Assurance Workforce Education and Training Working Group,
DHS Build Security In (BSI) portal at https://buildsecurityin.us-cert.gov/daisy/bsi/940-
BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf.

» ―The Protection of Information in Computer Systems”, Saltzer and Schroeder, at
http://web.mit.edu/Saltzer/www/publications/protection/.

» ―The Ten Best Practices for Secure Software Development‖, Mano Paul, (ISC)2.

https://www.thedacs.com/techs/enhanced_life_cycles
https://buildsecurityin.us-cert.gov/swa/procwg.html
https://buildsecurityin.us-cert.gov/daisy/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
https://buildsecurityin.us-cert.gov/daisy/bsi/940-BSI/version/default/part/AttachmentData/data/CurriculumGuideToTheCBK.pdf
http://web.mit.edu/Saltzer/www/publications/protection/

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

6

Architecture and Threat Modeling

Unified Markup Language (UML), developed by the Object Management Group (OMG), is a widely-used specification for
modeling software. UML provides the ability to describe the software architecture using various types of diagrams. It
provides diagrams to describe application states, information flow, components interaction and more. UML is quite
complex and explaining it in depth is beyond the scope of this pocket guide. For additional information, visit the UML
resource page or consult one of the multiple books available on the subject. Next is a brief description of some of the
diagrams available in UML.

Use case diagrams describe how an application should be used. The emphasis is on what a system does rather than
how. Used cases can be represented either text or graphics and there is no restriction on what should include or look like.

A Class diagram gives an overview of a system by showing its classes and the relationships among them. They can be
helpful in understanding the how an application is modeled, how classes interact with each other, and relationships in
modules for an Object-Oriented design.

A Component diagram describes the relationship of system components (software modules). A component diagram
depicts the component interfaces. Examples of components include data bases, web applications, etc.

Other modeling diagrams include:

» Object diagrams,
» Sequence diagrams,
» Collaboration diagrams,
» Statechart diagrams,
» Activity diagrams, and
» Deployment diagrams.

Some people in the SwA community feel that UML does not allow for the capture of security properties and does not
include a model for use or abuse cases. Successful techniques for this purpose include threat modeling, data flow
diagrams, abuse cases, and attack trees.

Misuse/Abuse Cases – Misuse cases are similar to use cases, except that they are meant to detail common attempted
abuses of the system. Like use cases, misuse cases require understanding the services that are present in the system. A
use case generally describes behavior that the system owner wants the system to show. Misuse cases apply the concept
of a negative scenario—that is, a situation that the system's owner does not want to occur. Misuse cases are also known
as abuse cases. For an in-depth view of misuse cases, see Gary McGraw‘s ―Misuse and Abuse Cases: Getting Past the
Positive‖ at the BSI portal at https://buildsecurityin.us-cert.gov/ .

Misuse cases can help organizations begin to see their software in the same light that attackers do. As use-case models
have proven quite helpful for the functional specification of requirements, a combination of misuse cases and use cases
could improve the efficiency of eliciting all requirements in a system engineering life cycle. Guttorm Sindre and Andreas
Opdahl extended use-case diagrams with misuse cases to represent the actions that systems should prevent in tandem
with those that they should support for security and privacy requirements. There are several templates for misuse and
abuse cases provided by Sindre and Opdahl, and Alexander. Figure 2 is an example of a use/misuse case diagram from
Alexander‘s paper. The high-level case is shown on the left. Alexander indicated that misuse and use cases may be
developed in stages, going from system to subsystem levels and lower as necessary. Lower-level cases may highlight
aspects not considered at higher levels, possibly forcing re-analysis. The approach is not rigidly top-down but offers rich
possibilities for exploring, understanding, and validating the requirements in any direction.

https://buildsecurityin.us-cert.gov/

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

7

Use cases describe system behavior in terms of
functional (end-user) requirements. Misuse
cases and use cases may be developed from
system to subsystem levels—and lower as
necessary. Lower level cases may draw
attention to underlying problems not considered
at higher levels and may compel system
engineers to reanalyze the system design.
Misuse cases are not a top-down method, but
they provide opportunities to investigate and
validate the security requirements necessary to
accomplish the system's mission.

As with normal use cases, misuse cases require
adjustment over time. Particularly, it is common to start with high-level misuse cases, and refine them as the details of the
system are better understood. Determining misuse cases generally constitutes an informed brainstorming activity among a
team of security and reliability experts. In practice, a team of experts asks questions of a system‘s designers to help
identify the places where the system is likely to have weaknesses by assuming the role of an attacker and thinking like an
attacker. Such brainstorming involves a careful look at all user interfaces (including environmental factors) and considers
events that developers assume a person can‘t or won‘t do. There are three good starting points for structured
brainstorming:

» First, one can start with a pre-existing knowledge base of common security problems and determine whether an
attacker may have cause to think such a vulnerability is possible in the system. Then, one should attempt to
describe how the attacker will leverage the problem.

» Second, one can brainstorm on the basis of a list of system resources. For each resource, attempt to construct
misuse cases in connection with each of the basic security services: authentication, confidentiality, access
control, integrity, and availability.

» Third, one can brainstorm on the basis of a set of existing use cases. This is a far less structured way to identify
risks in a system, yet it is good for identifying representative risks and for ensuring the first two approaches did
not overlook any obvious threats. Misuse cases derived in this fashion are often written in terms of a valid use
and then annotated to have malicious steps.

The OWASP CLASP process recommends describing misuse cases as follows:

» A system will have a number of predefined roles, and a set of attackers that might reasonably target instances of
the system under development. Together these should constitute the set of actors that should be considered in
misuse cases.

» As with traditional use cases, establish which actors interact with a use case — and how they do so — by
showing a communicates-association. Also as traditionally done, one can divide use cases or actors into
packages if they become too unwieldy.

» Important misuse cases should be represented visually, in typical use case format, with steps in a misuse set off
(e.g., a shaded background), particularly when the misuse is effectively an annotation of a legitimate use case.

» Those misuse cases that are not depicted visually but are still important to communicate to the user should be
documented, as should any issues not handled by the use case model.

Threat Modeling - A threat is a potential occurrence, malicious or otherwise, that might damage or compromise your
system resources. Threat modeling is a systematic process that is used to identify threats and vulnerabilities in software
and has become a popular technique to help system designers think about the security threats that their system might
face. Therefore, threat modeling can be seen as risk assessment for software development. It enables the designer to
develop mitigation strategies for potential vulnerabilities and helps them focus their limited resources and attention on the
parts of the system most ―at risk.‖ It is recommended that all software systems have a threat model developed and
documented. Threat models should be created as early as possible in the SDLC, and should be revisited as the system

Figure 2 - Misuse Case example

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

8

evolves and development progresses. To develop a threat model, implement a simple approach that follows the NIST 800-
30 [11] standard for risk assessment. This approach involves:

» Decomposing the application - understand, through a process of manual inspection, how the application
works, its assets, functionality, and connectivity.

» Defining and classifying the assets - classify the assets into tangible and intangible assets and rank them
according to business importance.

» Exploring potential vulnerabilities - whether technical, operational, or managerial.

» Exploring potential threats - develop a realistic view of potential attack vectors from an attacker‘s perspective,
by using threat scenarios or attack trees.

» Creating mitigation strategies - develop mitigating controls for each of the threats deemed to be realistic. The
output from a threat model itself can vary but is typically a collection of lists and diagrams. The OWASP Code
Review Guide at http://www.owasp.org/index.php/Application_Threat_Modeling outlines a methodology that can
be used as a reference for the testing for potential security flaws.

Secure Design Patterns

A software design pattern is a general repeatable solution to a recurring software engineering problem. Secure design
patterns are descriptions or templates describing a general solution to a security problem that can be applied in many
different situations. They provide general design guidance to eliminate the introduction of vulnerabilities into code or
mitigate the consequences of vulnerabilities. Secure design patterns are not restricted to object-oriented design
approaches but may also be applied to procedural languages. Secure design patterns provide a higher level of abstraction
than secure coding guidelines. Secure design patterns differ from security patterns in that they do not describe specific
security mechanisms such as access control, authentication, authorization and logging. They define secure development
processes, or provide guidance on the configuration of existing secure systems.

The Secure Design Patterns technical report categorizes three general classes of secure patterns according to their level
of abstraction: architecture, design, and implementation. This section provides a brief summary of the architecture and

design patterns. For sample implementation code of these patterns please visit www.cert.org/archive/pdf/09tr010.pdf.

Architectural-level Patterns - Architectural-level patterns focus on the high-level allocation of responsibilities between
different components of the system and define the interaction between those high-level components and include:

» Distrustful Decomposition - The intent of the distrustful decomposition secure design pattern is to move
separate functions into mutually untrusting programs, thereby reducing the attack surface of the individual
programs that make up the system and functionality and data exposed to an attacker if one of the mutually
untrusting programs is compromised. This pattern applies to systems where files or user-supplied data must be
handled in a number of different ways by programs running with varying privileges and responsibilities.

» Privilege Separation (PrivSep) - The intent of the PrivSep pattern is to reduce the amount of code that runs
with special privilege without affecting or limiting the functionality of the program. The PrivSep pattern is a more
specific instance of the distrustful decomposition pattern. In general, this pattern is applicable if the system
performs a set of functions that:

On-line Resources
» OMG Unified Modeling Language (UML) at http://www.uml.org/.

http://www.owasp.org/index.php/Application_Threat_Modeling
http://www.cert.org/archive/pdf/09tr010.pdf
http://www.uml.org/

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

9

» Do not require elevated privileges;
» Have relatively large attack surfaces in that the functions;
» Have significant communication with untrusted sources; and

» Make use of complex, potentially error-prone algorithms.

» Defer to Kernel - The intent of this pattern is to clearly separate functionality that requires elevated privileges
from functionality that does not require elevated privileges and take advantage of existing user verification
functionality available at the kernel level. The defer to kernel pattern is applicable to systems that:

» System is run by users who do not have elevated privileges;
» Some (possibly all) of the functionality of the system requires elevated privileges; or
» Prior to executing functionality that requires elevated privileges, the system must verify that the current

user is allowed to execute the functionality.

 Figure 3 depicts the general structure of the defer to kernel pattern.

Figure 3 - General Structure of Defer to Kernel Pattern (source: Secure Design Patterns)

Design-level Patterns - Design-level patterns describe how to design and implement pieces of a high-level system
component that addresses problems in the internal design of a single high-level component, not the definition and
interaction of high-level components themselves. The design-level patterns defined in this pocket guide include:

» Secure State Machine - The intent of the secure state machine pattern is to allow a clear separation between
security mechanisms and user-level functionality by implementing the security and user-level functionality as two
separate state machines. This pattern is applicable if:

» The user-level functionality can be cleanly represented as a finite state machine, or
» The access control model for the state transition operations in the user-level functionality state machine

can also be represented as a state machine.

The structure of the secure state machine pattern is depicted in Figure 4.

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

10

Figure 4 Secure State Machine Pattern (source: Secure Design Patterns)

» Secure Visitor - Secure systems may need to perform various operations on hierarchically structured data

where each node in the data hierarchy may have different access restrictions; that is, access to data in different
nodes may be dependent on the role/credentials of the user accessing the data. The secure visitor pattern
allows nodes to lock themselves against being read by a visitor unless the visitor supplies the proper credentials
to unlock the node. The secure visitor is defined so that the only way to access a locked node is with a visitor
helping to prevent unauthorized access to nodes in the data structure. This pattern is applicable if, among other
things, the system nodes in the hierarchical data have different access privileges.

Formal Methods and Architectural Design

Formal methods are the incorporation of mathematically based techniques for the specification, development, and
verification of software. Formal methods, in general, improve software security but can be costly and also have limitations
of scale, training, and applicability. To compensate for the limitations of scale, formal methods have been applied to
selected parts or properties of a software project, in contrast to applying them to the entire system. As for training
limitations, it may be difficult to find developers with the needed expertise in formal logic, the range of appropriate formal

Resources

» ―Secure Design Patterns‖, Chad Dougherty, Kirk Sayer, Robert Seacord, David Svoboda, Kazuya Togashi.
Software Engineering Institute at www.cert.org/archive/pdf/09tr010.pdf.

» ―Software Security Assurance: A State-of-the-Art Report‖ (SOAR), Goertzel, Karen Mercedes, et al.,
Information Assurance Technology Analysis Center (IATAC) of the DTIC at
http://iac.dtic.mil/iatac/download/security.pdf.

http://www.cert.org/archive/pdf/09tr010.pdf
http://iac.dtic.mil/iatac/download/security.pdf

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

11

methods for an application, or appropriate automated software development tools for implementing formal methods.
Formal methods can be useful for verifying a system. Verification shows that each step in the development satisfies the
requirements imposed by previous steps.

Formal methods can be used in the design phase to build and refine the software‘s formal design specification. Since the
specification is expressed in mathematical syntax and semantics, it is precise in contrast to nonformal and even semiformal
specifications that are open to reinterpretation.

There are many specification languages available, but are limited in scope to the specification of a particular type of
software or system, e.g., security protocols, communications protocols, and encryption algorithms. Examples of
specification languages and type include:

» Model-Oriented: Z, Vienna Development Method (VDM);

» Constructive: Program/Proof Refinement Logic (PRL);

» Algebraic/Property-Oriented: Larch, Common Algebraic Specification Language (CASL), OBJ;

» Process Model: Calculus of Communicating Systems (CCS), Communicating Sequential Processes (CSP); and

» Broad Spectrum: Rigorous Approach to Industrial Software Engineering (RAISE) Specification Language
(RSL), LOTOS (language for specifying communications protocols).

Formal Methods in Architectural Design - Formal methods can be used in the architecture phase to:

» Specify architectures, including security aspects of an architectural design,

» Verify that an architecture satisfies the specification produced during the previous phase, if that specification
itself is in a formal language,

» Establish that an architectural design is internally consistent,

» Automatically generate prototypes, and

» Automatically generate a platform-dependent architecture.

Information Assurance (IA) applications frequently must meet mandatory assurance requirements, and the use of formal
methods for IA applications is more prevalent than for many other types of applications. Formal methods are used in
assuring IA applications can be used to assure correctness for those willing to incur the costs. In IA applications, formal
methods have been used to prove correctness of security functionalities for authentication, secure input/output, mandatory
access control and security-related trace properties such as secrecy.

A variety of automated tools are available to assist developers adopting formal methods. Theorem provers are used to
construct or check proofs. Theorem provers differ in how much the user can direct them in constructing proofs. Model
checkers are a recent class of theorem provers that has extended the practicality of formal methods. Another range of
automated tools are associated with model-driven architecture (MDA) and model-driven development (MDD) are
considered semiformal rather than formal methods.

The SOAR describes how in Correctness by Construction, Anthony Hall and Roderick Chapman describe the development
of a secure Certificate Authority, an IA application. The formal top-level specification (architecture design) was derived
from the functionality defined in the user requirements, constraints identified in the formal security policy model, and results
from the prototype user interface. Praxis used a type checker to automatically verify the syntax in the formal top-level
specification and reviews to check the top-level specification against the requirements. The formal security policy model
and the formal top-level specification are written in Z, a formal specification language, while the detailed design derived
from the top-level specification is written in CSP.

In Modeling and Analysis of Security Protocols, Peter Ryan et al, describe their use of Failure Divergence Refinement
(FDR), a model-checking tool available from Formal Systems Ltd., the Caspar compiler, and CSP. They use these tools to
model and analyze a protocol for distributing the symmetric shared keys used by trusted servers and for mutual entity
authentication.

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

12

Other applications of formal methods are mentioned in Security in the Software Life Cycle. These include applications by
Kestrel and Praxis where they describe technology that includes Software specification, Language, Analysis, and Model-
checking (SLAM), which is Microsoft‘s model checking tool, the Standard Annotation Language (SAL), and Fugue.

Formal Methods and Detailed Design - The formal methods used in detailed design and implementation usually are
different from those used in system engineering, software requirements, and software architecture. Formal methods
adopted during earlier phases of the SDLC support the specification of systems and system components and the
verification of high-level designs. For architecture design, organizations use model checkers such as VDM, and formal
specification languages such as Z. Formal methods commonly used in detailed in design and implementation are typically
older methods, such as Edsger Dijkstra‘s predicate transformers and Harlan Mill‘s functional specification approach.

Formal methods for detailed design are most useful for:

» Verifying the functionality specified formally in the architecture design phase is correctly implemented in the
detailed design or implementation phases; and

» Documenting detailed designs and source code.

For example, under Dijkstra‘s approach, the project team would document a function by specifying pre- and post-
conditions. Preconditions and post-conditions are predicates such that if the precondition correctly characterizes a
program‘s state on entry to the function, the post-condition is established upon exiting. An invariant is another important
concept from this early work on formal methods. An invariant is a predicate whose truth is maintained by each execution of
a loop or for all uses of a data structure. A possible approach to documentation includes stating invariants for loops and
abstract data types. Without explicit and executable identification of preconditions, post-conditions, and invariants for
modules, formal methods in detailed design are most appropriate for verifying correctness when the interaction between
system components is predefined and well-understood.

On-line Resources

» ―Software Security Assurance: A State-of-the-Art Report‖ (SOAR), Goertzel, Karen Mercedes, et al,
Information Assurance Technology Analysis Center (IATAC) of the DTIC at
http://iac.dtic.mil/iatac/download/security.pdf.

http://iac.dtic.mil/iatac/download/security.pdf

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

13

Design Review

Design reviews should be performed by multiple persons with relevant software security expertise and legitimate
stakeholder interests. Formal techniques available include scenario-based reviews that were created for architecture
reviews. Reviews including security issues are essential at all levels of design. An independent outside review whenever
possible is recommended. Design-related portions of the assurance case should be reviewed as well. Since the best
results occur when one develops much of the design assurance case along with the design. Using checklists is also
useful.

Verification activities are typically conducted during the design phases at a number of types of reviews:

» Structured inspections, conducted on parts or views of the high-level design throughout the design phase;

» Independent verification and validation (IV&V) reviews;

» A preliminary design review conducted at the end of the architecture design phase and before entry into the
detailed design phase; and

» A critical design review conducted at the end of the detailed design phase and before entry into the coding and
unit testing phase.

Design Verification–The design should be verified considering the following criteria:

» The design is correct and consistent with and traceable to requirements;

» The design implements proper sequence of events, inputs, outputs, interfaces, logic flow, allocation of timing and
sizing budgets, error definition, isolation, and recovery;

» The selected design can be derived from requirements; and

» The design implements safety, security, and other critical requirements correctly as shown by suitably rigorous
methods.

The decision on which reviews to conduct and their definition usually takes place during the design of development
schedule. Such definitions typically include entry criteria, exit criteria, the roles of participants, the process to be followed,
and data to be collected during each review. The choice of reviews, particularly those performed as part of IV&V, is partly
guided by the evaluation requirements at the Common Criteria Evaluation Assurance Level (EAL). The processes for
reviewing the architecture and detailed design should also accommodate later reviews of architecture and design
modifications.

 Resources

» ―Software Security Assurance: A State-of-the-Art Report‖(SOAR), Goertzel, Karen Mercedes, et al,
Information Assurance Technology Analysis Center (IATAC) of the DTIC at

http://iac.dtic.mil/iatac/download/security.pdf.

http://iac.dtic.mil/iatac/download/security.pdf

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

14

Conclusion

This pocket guide compiles architecture and design software techniques for security and offers guidance on when they
should be employed during the SDLC.

The Software Assurance Pocket Guide Series is developed in collaboration with the SwA Forum and Working Groups and

provides summary material in a more consumable format. The series provides informative material for SwA initiatives that

seek to reduce software vulnerabilities, minimize exploitation, and address ways to improve the routine development,

acquisition and deployment of trustworthy software products. Together, these activities will enable more secure and

reliable software that supports mission requirements across enterprises and the critical infrastructure.

For additional information or contribution to future material and/or enhancements of this pocket guide, please consider

joining any of the SwA Working Groups and/or send comments to Software.Assurance@dhs.gov. SwA Forums are open

to all participants and free of charge. Please visit https://buildsecurityin.us-cert.gov for further information.

No Warranty

This material is furnished on an ―as-is‖ basis for information only. The authors, contributors, and participants of the SwA

Forum and Working Groups, their employers, the U.S. Government, other participating organizations, all other entities

associated with this information resource, and entities and products mentioned within this pocket guide make no warranties

of any kind, either expressed or implied, as to any matter including, but not limited to, warranty of fitness for purpose,

completeness or merchantability, exclusivity, or results obtained from use of the material. No warranty of any kind is made

with respect to freedom from patent, trademark, or copyright infringement. Reference or use of any trademarks is not

intended in any way to infringe on the rights of the trademark holder. No warranty is made that use of the information in

this pocket guide will result in software that is secure. Examples are for illustrative purposes and are not intended to be

used as is or without undergoing analysis.

Reprints

Any Software Assurance Pocket Guide may be reproduced and/or redistributed in its original configuration, within normal

distribution channels (including but not limited to on-demand Internet downloads or in various archived/compressed

formats).

Anyone making further distribution of these pocket guides via reprints may indicate on the pocket guide that their

organization made the reprints of the document, but the pocket guide should not be otherwise altered. These resources

have been developed for information purposes and should be available to all with interests in software security.

For more information, including recommendations for modification of SwA pocket guides, please contact
Software.Assurance@dhs.gov or visit the Software Assurance Community Resources and Information Clearinghouse:
https://buildsecurityin.us-cert.gov/swa to download this document either format (4‖x8‖ or 8.5‖x11‖).

mailto:Software.Assurance@dhs.gov
mailto:Software.Assurance@dhs.gov
https://buildsecurityin.us-cert.gov/swa

Software Assurance Pocket Guide Series:

Development, Volume V – Version 1.0, October 23, 2009

Architecture and Design Considerations for Secure Software

15

Software Assurance (SwA) Pocket Guide Series

SwA is primarily focused on software security and mitigating risks attributable to software; better enabling resilience in
operations. SwA Pocket Guides are provided; with some yet to be published. All are offered as informative resources; not
comprehensive in coverage. All are intended as resources for ‗getting started‘ with various aspects of software assurance.
The planned coverage of topics in the SwA Pocket Guide Series is listed:

SwA in Acquisition & Outsourcing

I. Software Assurance in Acquisition and Contract Language

II. Software Supply Chain Risk Management & Due-Diligence

SwA in Development

I. Integrating Security in the Software Development Life Cycle

II. Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses

III. Risk-based Software Security Testing

IV. Requirements & Analysis for Secure Software

V. Architecture & Design Considerations for Secure Software

VI. Secure Coding & Software Construction

VII. Security Considerations for Technologies, Methodologies & Languages

SwA Life Cycle Support

I. SwA in Education, Training & Certification

II. Secure Software Distribution, Deployment, & Operations

III. Code Transparency & Software Labels

IV. Assurance Case Management

V. Assurance Process Improvement & Benchmarking

VI. Secure Software Environment & Assurance Ecosystem

VII. Penetration Testing throughout the Life Cycle

SwA Measurement & Information Needs

I. Making Software Security Measurable

II. Practical Measurement Framework for SwA & InfoSec

III. SwA Business Case & Return on Investment

SwA Pocket Guides and related documents are freely available for download via the DHS NCSD Software Assurance

Community Resources and Information Clearinghouse at https://buildsecurityin.us-cert.gov/swa.

https://buildsecurityin.us-cert.gov/swa

